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Abstract—Approximate expressions for the spatial correlation
of cylindrical and uniform rectangular arrays (URA) are derived
using measured distributions of angles of departure (AOD) for
both the azimuth and zenith domains. We examine massive
multiple-input-multiple-output (MIMO) convergence properties
of the correlated channels by considering a number of con-
vergence metrics. The per-user matched filter (MF) signal-to-
interference-plus-noise ratio (SINR) performance and conver-
gence rate, to respective limiting values, of the two antenna
topologies is also explored.

I. INTRODUCTION

In order to meet demands for increased system capacity with
limited spectral resources, there is a broad consensus that this
can only be achieved via a large increase in system degrees
of freedom (d.o.f.) [1]–[3]. Consequently, massive multiple-
input-multiple-output (MIMO) systems are being investigated
[4]–[6], where the number of antennas are scaled up by at
least an order of magnitude relative to current base station
(BS) deployments. In the case of massive MIMO, fast-fading
effectively averages out [7]–[9], simplifying system analy-
sis. Practical implementation of large numbers of antennas
required for massive MIMO, typically in confined antenna
array dimensions, however, results in reduced inter-element
spacing adversely impacting system performance by way of
spatial correlation [10]. Spatial correlation models for wireless
systems are thus essential for accurate theoretical performance
analysis and guarantees.

An approximate spatial correlation model is presented in
[11] for clustered MIMO channels, deriving closed-form (CF)
expressions for a uniform linear array (ULA) and a uniform
circular array (UCA). This model however does not con-
sider the zenith domain, necessary for accurate performance
analysis. A correlation matrix is derived in [12] which con-
siders both the azimuth and zenith domains, from which it
is shown that the correlation matrix can be written as the
Kronecker product of each domains correlation matrix. We
propose to extend the works of [12] to massive MIMO antenna
topologies: namely for uniform rectangular array (URA) and
cylindrical antenna arrays, while incorporating Third Genera-
tion Partnership Project (3GPP) three-dimensional (3D) urban
macro cell (UMa) environment measured distributions [13].
With the likelihood of smaller cell sizes and increased line-of-
sight (LOS) propagation for next generation wireless systems,

we make a small angle approximation to derive correlation
expressions.

The contributions of this paper are as follows:

• We derive approximations for the spatial correlation of
a URA and cylindrical antenna arrays using measured
probability density functions (PDFs) of the AOD in both
azimuth and zenith domains.

• We show, via simulation, the impact of antenna array
topologies on the convergence rate of the channel to
massive MIMO channel properties. This is shown via a
number of channel convergence metrics.

• We show, via simulation, the impact of antenna array
topologies on performance and rate of convergence, to
respective limiting values, of matched filter (MF) per-user
signal-to-interference-plus-noise ratio (SINR).

• We show that antenna arrays introduce a correlation struc-
ture which does not vary between topology. As a result,
massive MIMO convergence metrics do not show any
sensitivity to antenna topology, but do show sensitivity
to the presence of correlation - which destroys the onset
of massive MIMO properties.

II. SYSTEM MODEL

A. System Description

We consider a multi-user (MU) massive MIMO downlink
(DL) system with M transmit antennas jointly serving a
total of K single-antenna users. We assume time division
duplex (TDD) operation with uplink (UL) pilots enabling the
transmitter to estimate the DL channel. The M ×K channel
matrix, H, is given by [14]

H = R
1
2
t Hiid, (1)

where Hiid is the M × K independent and identically dis-
tributed (i.i.d.) channel matrix with CN (0, 1) entries, account-
ing for small-scale Rayleigh fading, and Rt is the M ×M
spatial correlation matrix. We consider a cross-polarized (x-
pol) antenna configuration, with the spatial correlation matrix
modeled via [14]

Rt = Xpol �R, (2)

where the M×M matrix R is the co-polarized (co-pol) spatial
correlation matrix, � represents the Hadamard product and
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Fig. 1: (a) Cluster Model. (b) Channel Model Geometry.

Xpol is the M ×M x-pol matrix given by

Xpol = 1M/2 ⊗
[

1
√
δ√

δ 1

]
, (3)

where 1M/2 is a M
2 ×

M
2 matrix of ones, δ denotes the cross-

correlation between the two antenna elements in the x-pol
configuration and ⊗ represents the Kronecker product.

B. Channel Model

We consider a clustered channel model, shown in Figure 1a,
where we show the zenith AOD offset, ∆θ, of the wavefront
relative to the mean zenith AOD of the cluster, θ. In this
scenario, the linear antenna array is located on the z axis.
Similarly, if the antenna array was positioned on the y axis,
Figure 1a would describe the offset azimuth AOD, ∆φ, relative
to the mean azimuth AOD of the cluster, φ. The channel model
geometry is clarified in Figure 1b.

When large numbers of antennas are present, antenna
topologies should exploit x, y and z dimensions. In Section
III, we derive spatial correlation approximations for the two
antenna array topologies: URA and cylindrical, depicted in
Figures 2a and 2b, respectively. In Figure 2a, the URA is
geometrically positioned on the y, z plane, where adjacent
antennas are separated by d1 wavelengths on the z axis
and d2 wavelengths on the y axis. Adjacent antennas of the
cylindrical array, in Figure 2b, are separated by a displacement
of d1 wavelengths on the z axis and located at a radius of
ρ wavelengths from cylinder center, with respect to the x, y
plane.

For both antenna topologies, we express the spatial corre-
lation as the Kronecker product of the azimuth and zenith
domain correlations [12]

R = Rφ ⊗Rθ, (4)

and derive the corresponding correlation coefficients indepen-
dently in Section III. Thus, we consider the URA correlation
matrix as the Kronecker product of an A-element ULA in the
z dimension (zenith domain) and a B-element ULA on the
x, y plane (azimuth domain), where M = A × B. Likewise,
we consider the cylindrical array correlation as the Kronecker
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Fig. 2: (a) URA. (b) Cylindrical Array.

product of an A-element ULA in the z dimension and a B-
element UCA on the x, y plane.

The correlation coefficient between the ath and a′th antenna
in the zenith domain can then by given by [11]

Rθ(a,a′) =

∫
ej[Θa(∆θ)−Θa′ (∆θ)]p∆θ(∆θ)d∆θ, (5)

where Θa(∆θ) is the zenith domain phase shift of the ath
antennas AOD with respect to a reference antenna, p∆θ(∆θ)
is the zenith domain AOD offset PDF relative to the mean
zenith AOD of the cluster. Likewise, the correlation coefficient
between the bth and b′th antenna element in the azimuth
domain is

Rφ(b,b′) =

∫ ∫
ej[Φb(∆φ,∆θ)−Φb′ (∆φ,∆θ)]

× p∆φ(∆φ)p∆θ(∆θ)d∆φd∆θ, (6)

where Φb(∆φ,∆θ) is the azimuth domain phase shift of
the bth antennas AOD with respect to a reference antenna,
p∆φ(∆φ) is the azimuth AOD offset PDF relative to the
mean azimuth angle of the cluster. Note, we assume the
azimuth and zenith AOD offset PDF are independent, i.e.,
p∆φ,∆θ(∆φ,∆θ) = p∆φ(∆φ)p∆θ(∆θ).

We model the azimuth and zenith offset AOD PDFs from
measured values described by 3GPP [13]. Thus, the azimuth
AOD offset, relative to the mean AOD, is modeled as a
Wrapped Gaussian PDF, given by [13]

p∆φ(∆φ) =

 1
σ∆φ

√
2π

∞∑
i=−∞

e
− (∆φ+2πi)2

2σ2
∆φ ∆φ ∈ [−π, π)

0 otherwise
,

(7)
where σ∆φ is the standard deviation (SD) of ∆φ. Similarly,
the zenith AOD offset, relative to the mean AOD, is modeled
by a Laplacian PDF, given by [13]

p∆θ(∆θ) =

{
κ√

2σ∆θ
e−

∣∣∣√2∆θ
σ∆θ

∣∣∣
∆θ ∈ [−π, π)

0 otherwise
, (8)
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where σ∆θ is the SD of ∆θ and κ = 1/(1 − e−
√

2π/σ∆θ )
normalizes the PDF.

C. Convergence Metrics

In order to study the effects of antenna topology on the
convergence of massive MIMO properties, we consider the
convergence metrics used in [8]. We evaluate the convergence
of W = 1

MHTH∗ by examining a number of well known
properties of W and a deviation matrix E = W− IK , where
IK is the K × K identity matrix. Letting λ1, λ2, . . . , λK
denote the eigenvalues of W, we consider: λ range, Mean
Absolute Deviation (MAD) and Diagonal Dominance, defined
respectively as

λ range = λmax(W)− λmin(W), (9)

MAD(E) =
1

K2

K∑
i=1,j=1

|Eij |, (10)

Diagonal Dominance =

∑K
i=1 Wii∑K

i=1

∑K
j=1,j 6=i |Wij |

. (11)

These metrics will be evaluated via simulation for a number
of system scenarios in Section IV.

III. METHODOLOGY

We now derive approximations for the spatial correlation
of URA and cylindrical array topologies. In each case, for
simplicity we assume no antenna mechanical downtilt. As per
(4), we express the spatial correlation as the Kronecker product
of the azimuth and zenith domain correlations, and derive the
corresponding correlation coefficients independently.

A. Uniform Rectangular Array (URA)

We first consider the correlation in the zenith domain, Rθ,
of the URA, depicted in Figure 2a and geometrically described
in Section II-B. The zenith domain phase shift of the departing
wavefront from the ath antenna element, relative to a reference
antenna, can be expressed as [15]

Θa(∆θ) = kd1a cos(θ + ∆θ), (12)

where k is the wavenumber. The angle in (12) can be expanded
with a first-order Taylor series, while assuming ∆θ ≈ 0, to
give

cos(θ + ∆θ) ≈ cos(θ)−∆θ sin(θ). (13)

Since p∆θ(∆θ) is zero outside the range [−π, π), the PDFs
integration can be taken over [−∞,+∞]. From (5) we then
have

Rθ(a,a′) ≈
∫ ∞
−∞

ejkd1(a−a′)[cos(θ)−∆θ sin(θ)]p∆θ(∆θ)d∆θ

(14)

= ejkd1(a−a′) cos(θ)

∫ ∞
−∞

e−jkd1(a−a′) sin(θ)∆θ

× κ√
2σ∆θ

e−
∣∣∣√2∆θ
σ∆θ

∣∣∣
d∆θ (15)

= ejkd1(a−a′) cos(θ)Fω
{

κ√
2σ∆θ

e−
∣∣∣√2∆θ
σ∆θ

∣∣∣}
, (16)

where Fω denotes the Fourier transform evaluated at ω =
kd1(a− a′) sin(θ). Solving the Fourier transform in (16), we
have the approximation of the correlation coefficient for the
zenith domain of a URA as

Rθ(a,a′) ≈
κejkd1(a−a′) cos(θ)

1 +
σ2

∆θ

2 [kd1(a− a′) sin(θ)]2
. (17)

We now consider the correlation in the azimuth domain.
The azimuth domain phase shift of the departing wavefront
from the bth antenna element, relative to a reference antenna,
can be expressed as [15]

Φb(∆φ,∆θ) = kd2b cos(φ+ ∆φ) sin(θ + ∆θ). (18)

We can then use a first-order Taylor series expansion, while
assuming ∆φ ≈ 0, to express (18) as

cos(φ+∆φ) sin(θ+∆θ) ≈ sin(θ+∆θ) [cos(φ)−∆φ sin(φ)] .
(19)

Since both p∆φ(∆φ) and p∆θ(∆θ) are zero outside the range
[−π, π), the integration can be taken over [−∞,+∞]. From
(6), the correlation coefficient between two antenna elements
b and b′ is then given by

Rφ(b,b′) ≈
∫ ∞
∞

ejkd2(b−b′) sin(θ+∆θ) cos(φ)

×
[∫ ∞
−∞

e−jkd2(b−b′) sin(θ+∆θ) sin(φ)∆φp∆φ(∆φ)d∆φ

]
× p∆θ(∆θ)d∆θ. (20)

Considering the integral with respect to ∆φ, embedded in (20),
we have∫ ∞
−∞

e−jkd2(b−b′) sin(θ+∆θ) sin(φ)∆φp∆φ(∆φ)d∆φ

=

∫ ∞
−∞

e−jkd2(b−b′) sin(θ+∆θ) sin(φ)∆φ

×
∞∑

i=−∞

1

σ∆φ

√
2π

e
− (∆φ+2πi)2

2σ2
∆φ d∆φ (21)

= Fω

{ ∞∑
i=−∞

1

σ∆φ

√
2π

e
− (∆φ+2πi)2

2σ2
∆φ

}
, (22)

where the Fourier transform in (22) is evaluated at ω =
kd2(b − b′) sin(θ + ∆θ) sin(φ). Evaluating the Fourier trans-
form, one obtains

Rφ(b,b′) ≈ ejkd2(b−b′) sin(θ) cos(φ) κ√
2σ∆θ

×
∞∑

i=−∞
e

−1
2(1−j2πi) [σ∆φkd2(b−b′) sin(θ) sin(φ)]

2
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×Fω
{

e
−1

2(1−j2πi) [σ∆φkd2(b−b′) cos(θ) sin(φ)]
2
(∆θ)2

}
, (23)

where steps from (22) to (23) are given in the Appendix and
the Fourier transform in (23) is evaluated at

ω =

{
Ci −

√
2

σ∆θ
for ∆θ ≥ 0

Ci +
√

2
σ∆θ

for ∆θ < 0
, (24)

where

Ci = jkd2(b− b′) cos(θ)

×
[
cos(φ)− 1

j + 2πi
σ2

∆φkd2(b− b′) sin2(φ) sin(θ)

]
. (25)

Evaluating the Fourier transform in (23), we have the approx-
imation of the correlation coefficient for the azimuth domain
of a URA as

R∆φ(b,b′) ≈
κ√

2σ∆θ

ejkd2(b−b′) sin(θ) cos(φ)

×
∞∑

i=−∞
e

−1
2(1−j2πi) [σ∆φkd2(b−b′) sin(θ) sin(φ)]

2

× e
−ω2

2
1−j2πi [σ∆φkd2(b−b′) cos(θ) sin(φ)]

2

, (26)

with ω given in (24). The spatial correlation approximation
for the URA is then as per (4), with Rθ and Rφ given in (17)
and (26) respectively.

B. Cylindrical Array

Similar to the analysis for URA, the spatial correlation of
a cylindrical array, shown in Figure 2b, can be broken down
into the Kronecker product of the azimuth and zenith domains,
described in Section II-B. The zenith domain phase shift of the
ath antenna element, Θa(∆θ), and the correlation coefficient
between antennas a and a′, Rθ(a, a

′), are identical to the URA
case and are thus given in (12) and (17) respectively. In the
azimuth domain, the phase shift of the bth antenna element,
relative to a reference antenna is given by [15]

Φb(∆φ,∆θ) = kρb cos((φ− φb) + ∆φ) sin(θ + ∆θ), (27)

where φ− φb is the angle between the incident ray projected
onto the x, y plane and the bth antenna, relative to the the
circle center. Note that the azimuth domain phase shift in (27)
is analogous to (18), with ρ = d2 and φ− φb = φ. Therefore,
the spatial correlation approximation for the cylindrical array
is given in (4), where

Rφ(b,b′) ≈
κ√

2σ∆θ

ejkρ(b−b
′) sin(θ) cos(φ−φb)

×
∞∑

i=−∞
e

−1
2(1−j2πi) [σ∆φkρ(b−b′) sin(θ) sin(φ−φb)]

2

× e
−ω2

2
1−j2πi [σ∆φkρ(b−b′) cos(θ) sin(φ−φb)]

2

, (28)

where ω is given in (24), with

Ci = jkρ(b− b′) cos(θ) ×

[
cos(φ− φb)−

1

j + 2πi
σ2

∆φkρ(b− b′) sin2(φ− φb) sin(θ)

]
,

(29)

and Rθ is given in (17).

IV. NUMERICAL RESULTS

We consider the convergence metrics, described in Section
II-C, in order to determine how many antennas are required for
observable massive MIMO properties in a spatially correlated
environment. System parameters are presented in Table I.

Parameter Value
Frequency (GHz) 2.6

X-pol parameter,
√
δ 0.1

Azimuth AOD offset PDF, p∆φ(∆φ) Wrapped Gaussian
Zenith AOD offset PDF, p∆θ(∆θ) Laplacian

AOD cluster mean, {φ, θ} (log10([◦])) 0.7
AOD offset SD, {σ∆φ, σ∆θ} (log10([◦])) -0.3

TABLE I: System Parameters

A. Convergence Properties
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Fig. 3: λ range CDF for M
K = α = 10

In Figure 3, we show the cumulative distribution function
(CDF) of the λ range, given in (9), for varying M . The
eigenvalues of W are generated using H, given in (1), where
the simulated CDFs are generated from instantaneous array
factors, while the approximations are generated from (4). It
is seen that as we increase the number of transmit antennas,
M , the median value of the λ range CDF increases, rather
than converging to an equal eigenvalued channel, which is
observed in [8] and shown in [7] for an i.i.d. channel. This is
due to an increase in the dominant eigenvalue of W, resulting
from such a narrow angle spread. From Figure 3, we see that
for all values of M , our derived expressions approximate the
spatial correlation well. Thus, we use the approximations for
all results following.
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In Figure 4 we plot the average of MAD(E), given in (10),
versus K for α = 10 and 25. We observe very different
behaviour between the correlated and i.i.d. scenarios. In the
i.i.d. case, MAD(E) converges slowly to zero for increasing
K, with a quicker convergence rate for larger α. Note that the
average MAD(E) value is plotted in Figure 4 and the only way
for this to converge to zero is for all W matrices to be close
to IK . Hence, only in the i.i.d. case does each W become
close to IK as K increases.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

M

D
ia

g
o
n
a
l 
D

o
m

in
a
n
c
e

 

 

K Fixed = 10, i.i.d.

K Fixed = 10, URA

K Fixed = 10, Cylindrical

K=M/α, i.i.d.

K=M/α, URA

K=M/α, Cylindrical

Fig. 5: Diagonal Dominance vs M , with K fixed and K = M
α

Figure 5 shows the diagonal dominance of W (size K×K)
given in (11), as a function of the number of transmit antennas,
M . We see that the correlated scenario has similar trends
as the i.i.d. case. As with the results in [8] for K = M

α ,
the diagonal dominance decays. This follows as the number
of off-diagonals, which grow at a rate ≈ K2, increase the
denominator of (11) at a faster rate than the numerator. In
the correlated scenario, the diagonal dominance approaches
zero much faster than the i.i.d. case. Here, while the diagonal
elements converge to a mean of 1, the large number of

off-diagonals converge to a non-zero mean, dominating the
diagonal elements. On the other hand, for fixed K, the sum
of the diagonal elements increase by a greater proportion than
the off-diagonal elements as M is increased, resulting in a
more diagonally dominant i.i.d. W. In the correlated case
the diagonal dominance converges quickly to small non-zero
value.

Considering Figures 3, 4 and 5, we conclude that while
for i.i.d. channels, the massive MIMO metrics converge for
a very large numbers of antennas, desirable massive MIMO
properties are degraded with spatial correlation present (with
small angle spreads).

B. Convergence Properties of MF Precoder

We now explore the impact of massive MIMO antenna
topologies on MF SINR performance and convergence to
limiting values. The MF SINR of the ith user is given by

SINRi =

ρd
Kγ |h

T
i h
∗
i |2

1 + ρd
Kγ

∑K
j=1,j 6=i h

T
i h
∗
jh

T
jh
∗
i

, (30)

where ρd is the DL transmit signal to noise ratio (SNR), hi
denotes the ith column of H, and γ = tr(HTH∗)/K is the
power normalization factor.
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In Figure 6 we plot the expected value of (30). It can be
observed that there is a huge reduction in E[SINRi] perfor-
mance by introducing correlation of which antenna topology
has almost no effect on. The MF SINR for an i.i.d. scenario
rapidly converges to its limiting value, whereas in a correlated
case, E[SINRi] converges to limiting values for M > 200.
We conclude that linear precoders are highly sub-optimal for
massive MIMO systems in spatially correlated environments
with small angle spreads.

V. CONCLUSION

In this paper we develop approximations for the spatial
correlation of URA and cylindrical antenna arrays, from a 3D
channel model. Using derived approximations, we show that
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large spatial correlation, due to small angle spread, destroys
the convergence of massive MIMO properties with increasing
number of antennas. Furthermore, the impact of massive
MIMO antenna topology considered is shown to be negligible.
MF SINR performance and convergence rate is explored for
the two antenna topologies, showing the detrimental effect of
correlation, with respect to an i.i.d. channel. It should be noted
that if we increased inter-element spacings of the antenna
arrays relative to the angle spread, we would see a decrease in
correlation and the convergence metrics would approach the
i.i.d. case. We leave this to future work.

VI. FUTURE WORK

In the future, we aim at deriving correlation matrices
for various antenna topologies which do not rely on small-
angle distributions. Also, we aim to incorporate the effects of
mutual coupling, due to the proximity of antennas as electrical
components, important for the analysis of large antenna arrays.
Furthermore, an investigation into how the various antenna
spacing parameters influence the correlation for the antenna
topologies will give insight into the structure of the correlation
matrices and how to carefully design an antenna array.

APPENDIX

From (22), we have

Rφ(b,b′) ≈
∫ ∞
∞

ejkd2(b−b′) sin(θ+∆θ) cos(φ)
∞∑

i=−∞
e

−1
2(1−j2πi)

×[σ∆φkd2(b−b′) sin(θ+∆θ) sin(φ)]
2

p∆θ(∆θ)d∆θ (31)

≈
∫ ∞
∞

ejkd2(b−b′)[sin(θ)+∆θ cos(θ)] cos(φ)
∞∑

i=−∞
e

−1
2(1−j2πi)

×[σ∆φkd2(b−b′)[sin(θ)+∆θ cos(θ)] sin(φ)]
2

p∆θ(∆θ)d∆θ

= ejkd2(b−b′) sin(θ) cos(φ)
∞∑

i=−∞
e

−1
2(1−j2πi)

×[σ∆φkd2(b−b′) sin(θ) sin(φ)]
2
∫ ∞
−∞

ejkd2(b−b′) cos(θ)

×[cos(φ)− 1
j+2πiσ

2
∆φkd2(b−b′) sin2(φ) sin(θ)]∆θ×

e
−1

2(1−j2πi) [σ∆φkd2(b−b′) cos(θ) sin(φ)]
2
(∆θ)2

p∆θ(∆θ)d∆θ (32)

= ejkd2(b−b′) sin(θ) cos(φ) κ√
2σ∆θ

∞∑
i=−∞

e
−1

2(1−j2πi)

×[σ∆φkd2(b−b′) sin(θ) sin(φ)]
2
∫ ∞
−∞

ejkd2(b−b′) cos(θ)

×[cos(φ)− 1
j+2πiσ

2
∆φkd2(b−b′) sin2(φ) sin(θ)]∆θ × e−

√
2

σ∆θ
|∆θ|

× e
−1

2(1−j2πi) [σ∆φkd2(b−b′) cos(θ) sin(φ)]
2
(∆θ)2

d∆θ, (33)

where a Taylor series expansion is used to obtain (32).
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